Conference on Precision Electromagnetic Measurements - CPEM 2020, Denver (United States of America). 24-28 August 2020
Summary:
This paper describes a study of uncertainty propagation through the Train Simulator Algorithm (TSA). The algorithm is used to estimate train driving time, consumed and regenerated energy. These output quantities are important to optimize the driving profile of the train and minimize energy spending. The uncertainty propagation was calculated using the Monte Carlo method. The sensitivity of output uncertainties on the input uncertainties was evaluated for two different train tracks in Spain, Madrid Metro, and in Italy, Bolonia-Ozzano. Results will be used to improve eco-driving profiles.
Keywords: uncertainty, Monte Carlo methods, energy consumption, railway engineering.
DOI: https://doi.org/10.1109/CPEM49742.2020.9191703
Published in CPEM 2020, pp: 1-2, ISBN: 978-1-7281-5899-0
Publication date: 2020-08-24.
Citation:
M. Šíra, A.P. Cucala, A. Fernández-Cardador, A. Fernández Rodríguez, Sensitivities and uncertainties of eco-driving algorithm estimating train power consumption, Conference on Precision Electromagnetic Measurements - CPEM 2020, Denver (United States of America). 24-28 August 2020. In: CPEM 2020: Conference proceedings, ISBN: 978-1-7281-5899-0